Part Number Hot Search : 
MCZ33 R10MD 6100CT SKY77181 62NS04 BAS40 M2150 TZM5250B
Product Description
Full Text Search
 

To Download IRG7IC30FD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  insulated gate bipolar transistor withultrafast soft recovery diode e g n-channel c v ces = 600v i nom = 24a v ce(on) typ. = 1.60v t sc ?? 3 s, t j(max) = 150c g c e gate collector emitter 
     features      
  !"#
#  $ % !&
'!  ( " )%*#    '
++,     )*-
  #,#  '+   
#    &
%-. absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 24 i c @ t c = 100c continuous collector current 12 i cm pulse collector current, v ge = 15v 72 i lm clamped inductive load current, v ge = 20v 96 a i f @ t c = 25c diode continous forward current 24 i f @ t c = 100c diode continous forward current 12 i fm diode maximum forward current  96 v ge gate-to-emitter voltage 30 p d @ t c = 25c maximum power dissipation 42 w p d @ t c = 100c maximum power dissipation 17 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw 10 lbfin (1.1 nm) thermal resistance parameter min. typ. max. units r ? jc (igbt) thermal resistance junction-to-case-(each igbt)  CCC CCC 3.0 c/w r ? jc (diode) thermal resistance junction-to-case-(each diode)  CCC CCC 3.7 r ? ja thermal resistance, junction-to-ambient (typical socket mount) CCC 65 CCC 
// 01-   '   
+
121 1 downloaded from: http:///

// 01-   '   
+
121  notes:  v cc = 80% (v ces ), v ge = 20v, l = 400 h, r g = 22 ? .  pulse width limited by max. junction temperature.  r ?? is measured at t j of approximately 90c.  maximum limits are based on statistical sample size characterization. electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 v v ge = 0v, i c = 1.0ma ? v (br)ces / ? t j temperature coeff. of breakdown voltage 0.51 v/c v ge = 0v, i c = 2.0ma (25c-150c) v ce(on) collector-to-emitter saturation voltage 1.60 1.85 i c = 24a, v ge = 15v, t j = 25c 1 . 6 0 v i c = 24a, v ge = 15v, t j = 150c v ge(th) gate threshold voltage 4.5 7.0 v v ce = v ge , i c = 1.0ma ? v ge(th) / ? tj threshold voltage temp. coefficient -14 mv/c v ce = v ge , i c = 1.0ma (25c - 150c) gfe forward transconductance 26 s v ce = 50v, i c = 24a, pw = 30 s i ces collector-to-emitter leakage current 1.0 30 a v ge = 0v, v ce = 600v 1 . 3m a v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop 1.50 1.80 v i f = 24a 1 . 4 0 i f = 24a, t j = 150c i ges gate-to-emitter leakage current 100 na v ge = 30v switching characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units q g total gate charge (turn-on) 88 130 i c = 24a q ge gate-to-emitter charge (turn-on) 17 26 nc v ge = 15v q gc gate-to-collector charge (turn-on) 43 65 v cc = 400v e on turn-on switching loss 785 1015 i c = 24a, v cc = 400v, v ge = 15v e off turn-off switching loss 780 1010 j r g = 22 ? , l = 400 h, t j = 25c e total total switching loss 1570 2020 energy losses include tail & diode reverse recovery t d(on) turn-on delay time 58 76 i c = 24a, v cc = 400v, v ge = 15v t r rise time 36 54 ns r g = 22 ? , l = 400 h, t j = 25c t d(off) turn-off delay time 249 283 t f fall time 114 133 e on turn-on switching loss 1090 i c = 24a, v cc = 400v, v ge =15v e off turn-off switching loss 1530 j r g =22 ? , l=400 h, t j = 150c e total total switching loss 2620 energy losses include tail & diode reverse recovery t d(on) turn-on delay time 54 i c = 24a, v cc = 400v, v ge = 15v t r rise time 35 ns r g = 22 ? , l = 400 h t d(off) turn-off delay time 295 t j = 150c t f fall time 277 c ies input capacitance 2400 pf v ge = 0v c oes output capacitance 130 v cc = 30v c res reverse transfer capacitance 57 f = 1.0mhz t j = 150c, i c = 96a rbsoa reverse bias safe operating area full square v cc = 480v, vp 600v rg = 22 ? , v ge = +20v to 0v scsoa short circuit safe operating area 3 s v ge = 15v, v cc = 400v, vp 600v rg = 22 ? , r shunt = 11m ??? t c = 100c erec reverse recovery energy of the diode 147 j t j = 150c t rr diode reverse recovery time 105 ns v cc = 400v, i f = 24a i rr peak reverse recovery current 22 a v ge = 15v, rg = 22 ? , l =400 h conditions downloaded from: http:///

// 01 -  '  
+
121  0.1 1 10 100 f , frequency ( khz ) 0 2 4 6 8 10 12 14 16 18 20 l o a d c u r r e n t ( a ) for both: duty cycle : 50% tj = 150c tcase = 100c gate drive as specified power dissipation = 16.7w fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) i square wave: v cc diode as specified fig. 2 - maximum dc collector current vs. case temperature fig. 3 - power dissipation vs. case temperature fig. 4 - forward soa t c = 25c, t j ?? 150c, v ge =15v fig. 5 - reverse bias soa t j = 150c, v ge =20v 25 50 75 100 125 150 t c (c) 0 5 10 15 20 25 i c ( a ) 25 50 75 100 125 150 t c (c) 0 10 20 30 40 50 p t o t ( w ) 10 100 1000 v ce (v) 1 10 100 1000 i c ( a ) 1 10 100 1000 10000 v ce (v) 0.01 0.1 1 10 100 i c ( a ) 1msec 10 sec 100 sec tc = 25c tj = 150c single pulse dc downloaded from: http:///

// 01-   '   
+
121 3 fig. 6 - typ. igbt output characteristics t j = -40c; tp = 30 s fig. 7 - typ. igbt output characteristics t j = 25c; tp = 30 s 0 2 4 6 8 10 v ce (v) 0 20 40 60 80 100 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0 2 4 6 8 10 v ce (v) 0 20 40 60 80 100 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v fig. 8 - typ. igbt output characteristics t j = 150c; tp = 30 s fig. 9 - typ. diode forward characteristics tp = 30 s fig. 11 - typical v ce vs. v ge t j = 25c fig. 10 - typical v ce vs. v ge t j = -40c 5 1 01 52 0 v ge (v) 1 2 3 4 5 6 7 8 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a i ce = 48a 5 1 01 52 0 v ge (v) 1 2 3 4 5 6 7 8 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a i ce = 48a 0 2 4 6 8 10 v ce (v) 0 20 40 60 80 100 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0.0 1.0 2.0 3.0 v f (v) 0 20 40 60 80 100 i f ( a ) -40c 25c 150c downloaded from: http:///

// 01 -  '  
+
121 4 fig. 12 - typical v ce vs. v ge t j = 150c fig. 13 - typ. transfer characteristics v ce = 25v; tp = 30 s 0 5 10 15 v ge (v) 0 10 20 30 40 50 60 70 80 90 100 i c e ( a ) t j = 25c t j = 150c 5 1 01 52 0 v ge (v) 0 1 2 3 4 5 6 7 8 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a i ce = 48a fig. 14 - typ. energy loss vs. i c t j = 150c; l = 400 h; v ce = 400v, r g = 22 ? ; v ge = 15v fig. 15 - typ. switching time vs. i c t j = 150c; l = 400 h; v ce = 400v, r g = 22 ? ; v ge = 15v fig. 16 - typ. energy loss vs. r g t j = 150c; l = 400 h; v ce = 400v, i ce = 24a; v ge = 15v fig. 17 - typ. switching time vs. r g t j = 150c; l = 400 h; v ce = 400v, i ce = 24a; v ge = 15v 0 1 02 03 04 05 0 i c (a) 0 500 1000 1500 2000 2500 3000 e n e r g y ( j ) e off e on 0 10 20 30 40 50 i c (a) 1 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 20 40 60 80 100 rg ( ? ) 0 500 1000 1500 2000 2500 e n e r g y ( j ) e off e on 0 20 40 60 80 100 r g ( ? ) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on downloaded from: http:///

// 01-   '   
+
121 5 fig. 18 - typ. diode i rr vs. i f t j = 150c fig. 19 - typ. diode i rr vs. r g t j = 150c 10 15 20 25 30 35 40 45 50 i f (a) 10 15 20 25 30 i r r ( a ) r g = 10 ? r g = 22 ? r g = 47 ? r g = 100 ? 0 25 50 75 100 r g ( ?? 16 18 20 22 24 26 28 i r r ( a ) fig. 20 - typ. diode i rr vs. di f /dt v cc = 400v; v ge = 15v; i f = 24a; t j = 150c fig. 21 - typ. diode q rr vs. di f /dt v cc = 400v; v ge = 15v; t j = 150c 200 300 400 500 600 700 800 di f /dt (a/ s) 16 18 20 22 24 26 28 i r r ( a ) 0 200 400 600 800 1000 di f /dt (a/ s) 0 500 1000 1500 2000 2500 q r r ( n c ) 10 ? 22 ? 100 ? 47 ? 12a 24a 48a fig. 22 - typ. diode e rr vs. i f t j = 150c 10 20 30 40 50 i f (a) 50 100 150 200 250 300 e n e r g y ( j ) r g = 10 ? r g = 22 ? r g = 47 ? r g = 100 ? fig. 23 - v ge vs. short circuit time v cc = 400v; t c = 25c 8 1 01 21 41 61 8 v ge (v) 4 6 8 10 12 14 t i m e ( s ) 5 10 15 20 25 30 c u r r e n t ( a ) t sc i sc downloaded from: http:///

// 01 -  '  
+
121 6 fig 26. maximum transient thermal impedance, junction-to-case (igbt) fig. 25 - typical gate charge vs. v ge i ce = 24a; l = 600 h 0 2 04 06 08 01 0 0 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e , g a t e - t o - e m i t t e r v o l t a g e ( v ) v ces = 400v v ces = 300v fig. 27. maximum transient thermal impedance, junction-to-case (diode) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ? j ? j ? 1 ? 1 ? 2 ? 2 ? 3 ? 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i ? ri ci= ? i ? ri ? ? c ? 4 ? 4 r 4 r 4 ri (c/w) ?? i (sec) 0.40773 0.0006570.55987 0.002467 1.37229 0.108148 1.36164 2.2461 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ? j ? j ? 1 ? 1 ? 2 ? 2 ? 3 ? 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i ? ri ci= ? i ? ri ? ? c ? 4 ? 4 r 4 r 4 ri (c/w) ?? i (sec) 0.19486 0.0002560.32103 0.001648 1.21121 0.116269 1.27150 2.1752 fig. 24 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz 0 100 200 300 400 500 v ce (v) 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres downloaded from: http:///

// 01-   '   
+
121 7 fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit 0 1k vcc dut l l rg 80 v dut vcc + - fig.c.t.5 - resistive load circuit rg vcc dut r = vcc icm fig.c.t.3 - s.c. soa circuit fig.c.t.4 - switching loss circuit l rg vcc dut / driver diode clamp / dut -5v dc 4x dut vcc downloaded from: http:///

// 01 -  '  
+
121 8 fig. wf3 - typ. diode recovery waveform @ t j = 150c using fig. ct.4 fig. wf1 - typ. turn-off loss waveform @ t j = 150c using fig. ct.4 fig. wf2 - typ. turn-on loss waveform @ t j = 150c using fig. ct.4 fig. wf4 - typ. s.c. waveform @ t j = 25c using fig. ct.3 -100 0 100 200 300 400 500 -3e-01 -1e-01 1e-01 3e-01 tim e (s) v ce (v ) -10 0 10 20 30 40 50 i ce (a ) test current 90% test current 5% v ce 10% test current tr eon loss -30 -20 -10 0 10 20 30 -0.25 -0.05 0.15 0.35 time (ns) i f (a) pe a k i rr t rr q rr -100 0 100 200 300 400 500 600 -2.0 0.0 2.0 4.0 6.0 8.0 time (s) vce (v) -100 0 100 200 300 400 500 600 ice (a) vce ic e -100 0 100 200 300 400 500 -5e-01 0e+00 5e-01 1e+00 time(s) v ce (v) -10 0 10 20 30 40 50 i ce (a) 90% i ce 5% v ce 10% i ce eoff loss tf downloaded from: http:///

// 01-   '   
+
121 1 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on irs web site. note: for the most current drawing please refer to ir website at http://www.irf.com/package/ to-220ab full-pak package outlinedimensions are shown in millimeters (inches) to-220ab full-pak part marking information   
 
 
      
 
 
   

    
!"#$%&''#()*+*$%#,!'$"$!% $%-$.&"#'#&-/0##     
1 
  
   to-220ab full-pak package is not recommended for surface mount application. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRG7IC30FD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X